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Abstract

It is conjectured that the addition of a small compressive
force might increase bending strength. Extensive tests of
western hemlock 2 by 6's under eccentric axial load bear this
out. Test members were short but length effect is studied
analytically by simulating long members with a finite element
computer program. A small sample of long members was
tested to verify the computer model. Verification was not
thorough but the model appears to do very well. It accurately
reproduces the mean but underestimates the variance. Further
work on the model is planned. This work will have important
applications to column design and wood truss design.
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hItroduction '> In order to limit the scope of the study, only one species
(Western Hemlock) and one size (nominal 2 x 6) were studiad

Wood members under combined bending and compression oc-, The effects of length and grade of material were recng J
cur as structural elements in several important applications: asl critical but rather than test several combinations of length and
the top chords of trusses, as wall studs, as frame members in grade it was decided to simulate these effects with a finite-
towers, and in other rigid frame structures. While strength in element computer program. In that way only short pieces
bending alone and compression alone have been extensively (single "elements") need be tested to establish a data pool
studied, the interaction of these two modes of failure is from which a computer program can select elements and
poorly understood, particularly for dimension lumber of com- mathematically simulate the behavior of longer members. The
mon onstUction grades. There is reason to expect that a effect of material grade was incorporated by measuring a
moderate compressive force acting in concert with a bending quality index for each element. The edgewise bending stiffness
moment could raise the moment capacity by shifting the mode was chosen for this index because it is known to have the best
of failure from a defect-controlled brittle rupture to a more correlation with bending strength of any nondestructive
ductile compression failure (1).1 Plastic buckling could measurement. In addition to establishing the data pool of ele-

A become a failure mode. In the absence of good data on mert properties, a few longer members were tested to verify
failure under combined bending and compression, present the finite element model's predictive ability.
design recommendations are quite conservative; this conser-
vatism is a major economic factor in the wood roof truss in- Thus, the aims of the experimental program were twofold:

'1 dustry.
1. To test short members under combined bending and

Experimental compression at various M/C ratios. For this purpose four

large groups of specimens were tested, three under eccentric
iDedg of Eperlmjts axial load at different eccentricities and one in pure bending.

-The aim of this study was to define a failure locus in the
plane of bending moment (M) versus compressive force (C). 2. To verify the computer-simulated behavior of longer
Attention was restricted to that portion of the plane where members. For this (secondary) purpose, a small group of
bending stress exceeds compressive stress since that is the 8-foot long members were quality-rated and then tested under
region of greatest importance in the design of wood frame eccentric axial load.
structures and trussed roofs.

The resulting experimental design is shown in table 1.

'Maintained at Madison, Wis., in cooperation with the University of
Wisconsin. Western hemlock of 10-foot and 12-foot lengths was pur-

'Italicized numbers in parentheses refer to literature cited at end of this report. chased from the Eburn mill of the Canadian Forest Products
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members to be cut from each longer length. Since western
hemlock and white fir are marketed together, each piece had
to be identified by microscopic examination of cell structure
and the white fir segregated for use in other studies.

Er = S(P,-P,)L'

Five-hundred specimens 5 feet long were cut with an effort to
position defects in the center 18 inches of the piece whenever where P- load, H - head movement, L - 54 inches, b width,
possible. Thirty members 11 feet long were cut frot pieces and h -depth. The 1 -foot specimens were each quality rated
deemed not suitable for the short specimens. Short specimens at five different positions by a similar test in edgewise bending
were quality rated by testing in edgewise bending to a load of under two-point loading as shown in figure 2. Between
300 pounds. Two-point load was applied at the third points as readings the member was indexed through me test machine in
shown in figure 1. An online computer took digitized readings 19-nch increments. Again a computer used head movement
of load and head movement at two points and computed an and machine load to compute Er for each of five "elements"
"E-ratng" value, Er, from the formula in the central S-foot gag length of these 11-foot members.
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Figure 3.-Loading fixture for applying eccentric adda
load. ,A) diagram, B) photo of side view. and
Q) photo looking into empty boot. Rope
restrains boot from failing out when specimen
fails.

The short members were sorted in order of increasing Er . The t= -,,
A= + y') (2)

first four were randomly assigned to groups I through 4. The 2(y
next four were then randomly assigned, and the next four, I 2(y, - Y2) (3)
etc., until four matched groups were produced with nearly R = a(21 + y + y,)
identical distributions of E. . Table 2 shows how closely the Er
distributions of groups one to four agreed. Mewns ranged where Wt =axial elongation (contraction if negative), R
from 1.03 to 1.05 million pounds per square inch and coeffi- =radius of curvature, I =Sage length (18 in.), and] a =arm
cients of variat'on ranged from 0. 157 to 0.211. length (14 in.).

Test Methods

Groups One to Three
Eccentric axial load was applied through grips in the form of -.
steel boots 18 inches long. The top of the boot bore against ]- " r
the end of the specimen. The narrow sides of the boot were _ l i

made snug against the specimen by means of adjusting screws [
shown in figure 3. The bottom of the boot had flanges which

received the test machine load by way of a yoke which
straddled the boot. This put the pivot point as close to the
gage length as possible in order to minimize the growth of
eccentricity due to specimen deformation during a test. Since r~AWotAIM Y, •a~
inservice wal studs and roof truss chords are restrained|
against lateral buckling by sheathing materials, the test / [
specimens were laterally supported at midspan by fixed braces
on each side of the specimen. Initially there was an l/8-inchI
clearance between the specimen and the lateral supports and I I
the support braces were surfaced with a hard polished plastic AOWt '/ /
having a low coefficient of friction. In this manner the L.. ,-
specimens were constrained to deflect only in the direction of $rM)greatest stiffness. H rtSi

Deformation measurements were taken by two linear variable

differential transformers (LVDT's) at the ends of arms at- 400tached to the wide faces of the specimen, as shown in figure Figure 4. aDexiaclmeter arrangement. Rigid arms were
damped to specimen and linear varible d s4. The arms were amped to the specimen with an E8-inch ferrt.i tre~ormerT (LVDT's) were mounted

Me length betwee then an y readings y, and betwn them at 7 inches n either side of
y* are related to axial deflection and curvature as follows: center line.

cients.-.-..-..? of. .. v .r.a-n rangedfrom0.7 to 0.1. length.(

Test ethod



The moment applied to the specimen by the eccentric axial

loa isM=Pd (4)

where 6 equals lateral deflection of specimen centroidal axis
measured from line of action of P. During test, the boots
rotate through an aingle 9

where ~ ~ ~ ... (5)asaclnthbtenbos wihi 4ice

L-. (se figure 5). 7Tus d can be computed from

Sdze Cos- 2+ b A R(1 - cos) (6)

$-AP - 040 wher e -eccentricity and b =4 inches =distance from Pivot

-' point to edge of boot.

P 1Load P and deflections y, and Y2 Were recorded automatiCallY
on punched paper tape with the aid of an online computer

M 14 o and teletype machine (see figure 6). An X-Y plotter recorded
y. and Y, versus P. The paper tapes were later read by

Figure 5. -Exated specinaen deformation showing another computer and reduced to R, P. and 6 and stored on'
cur-vature and center ddJlecion d magnetic tape. These umgetic tapes and the X-Y plots form

a permanent record of the raw test data.

IIL
* Plwe &-Autoatl daw recordbig w aeom~pI~

with (a) an X- Y plotter, (b) an online compu-
te, andf (c) a teletyvpe machine with pape tApe

V ...punch.



Deb Pressmlg parentheses. It is seen that these properties did not vary a-
Each test in groups one to four was processed to yield a plot preciably between groups. Therefore no adjustments were
of moment versus curvature. From these plots four properties made to the data to correct for these variations.
were extracted: stiffness, strength, ductility, and knee-shape.
To do this, the Raners-Osgood function was fitted to the Results of Experiments
plotsofMversusR _c -- ,Mc , -(7) Short SpelnMesU-Groups One to Foer

The results of the short member tests were four properties of
where c = half depth = 2.75 inches, El = flexural rigidity, each specimen obtained by fitting a Ramberg-Osgood func-
pounds-inches, and K and n are fitted parameters. tion as described under Data Processiag. There were four
To minimize rounding error in the curve fitting computations groups of specimens corresponding to four eccentricities as

it is better to write equation (7) in the form shown in table 1. Within each group a normal probability
curve was fitted to each of the four properties, stiffness El,

=x+exp(ln(Yn)+nln(L) I (8) strength xu, ductility Yu, and knee-shape n, and to the quality
heexa Mc x ~cindex, Er. In some cases it was found that the logarithm of

wher x u •x at ultimate load, and yu w (- Mc) at the property was more nearly normal than the property itself.
ultimate load. This reduces to the Ramberg-Osgood form (eq. Specifically, the following properties were fitted with a multi-
(7) ) if K a N K is not a convenient parameter since it variate normal probability curve:xni

can easily become so large that it overflows the floating point Stiffness-El, Strength-ein Mu, Ductiityen Yu, Knee-
accumulator of a digital computer. Fitting the function given shape-In n, Quality-Er, where Mu is the moment at max-
by equation (8), the four desired properties can easily be imum load and Er is the E-rating index of quality obtained

with the following fitted parameters: from a preliminary nondestructive test as described underidentified wt te ng f it .a n=eters: Specimen Preparation. The results of these curve fittings are
E1 = stiffness, xu = strength, yu = ductility, and n = knee-shape, summarized in table 3 which gives the means and the matrix

Figure 7 shows a typical fitted curve and the geometric mean- of covariance for groups one to four.

ing of the four properties. Hereafter this moment-curvature Since the covariance matrix is diagonally symmetric, it con-
characteristic will be referred to as the "property" curve since Sins oi is ien t m nts. se trlcs t 5mns
it is uniquely specified by the four relevant properties. Note fo 20 independent atis ts . These sha e
that the tail of the test record beyond maximum load is ig-

nored in fitting the Ramberg-Osgood function, because this is denoted as S, through S2. defined such that

a test machine artifact and not relevant to the dead-load con-LE 1 SI
ditions for which members are designed. ln(Mu) $2

Mean of ln(yu) S,
, - o,.r or In(n) S,

~1A M'hN LOAD 
Er(a ] S :

.. a MLF AMTN Fs S, s. s, Sa*1
r S11 S12 SIS S.iCovariance matrix= 1 SI,, SI S .

AtL (diagonally symmetric) * S S. S,,I * . . s,J,

For example, So is the covariance of El and In yu. Together,
the 20 statistics for any one group uniquely specify a multi-
variate (specifically five-variate) normal distribution that

_characterizes that group.

It should be noted that the characteristic multivariate distribu-
M 146 613 tion depends on e, the eccentricity of the group. All 20

Figure 7.-7ypical plot of moment versus curvature, statistics (with the exception of S, and Sao, the mean and
from which four element properties can be de- variance of Er) are functions of eccentricity e. Figure 8
rived: stiffness El strength M. ductility y, shows, as an example, how the mean of the strength
and shape n. Larger n implies-a sharper knee. parameter In Mu varies with eccentricity. For convenience in

treating group four (pure bending, e = -o) the statistics are
plotted against the reciprocal of e and group four is at the

Minor Tests origin. Note that the expected results were obtained: pure
After testing the strength specimens to destruction, small bending does not have the highest moment capacity. It is in-
coupons approximately 1.5 by 1.5 by 5.5 inches were cut from teresting to plot this in a plane of moment versus axial force.
each and used to measure specific gravity and moisture con- Figure 9 shows such a plot. It is seen that the addition of a
tent. The results are summarized for each group in table 2 small amount of axial compression does indeed increase the
which shows means followed by coefficient of variation in moment capacity for members tested over a short gage length.

,%-,:,.......,...,... ............ .......... .. ,... ...... L . .
- %,- ", ,, "~~. .. ... . . '.. . . . .. . ' .- . . .-.. . .- . " " .. . ."

,; ,' -, ., ,=.,~ ..... .... .. _ .,.. .... ........ .. .... i .
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It is tempting at this point to simply use the data of groups Fgure 9.-Results of short member tets failure moment
one to four as a basis for design of members under combined versus failure load (both measured at point of

* bending and compression. However, the effect of length (n-xnanlod o rup n ofu
cluding the possibility of plastic buckling) is critical and is not (IS hun b)

contained in figure 9. Group 5 shows this. It had the same ec-
centricity as group one but different length and, as table 2 add up to a 95-inch-long member - essentially 8 feet. The
shows, its mean ultimate load was only about half of that of results of the short member tests, which had a gage length of
group one. The Er distributions of groups five and onear 18 inches, were used in a five-element model to simulate the
not quite as closely matched as those of groups one to four behavior of the group five specimens. The error of using data
but are still very close. This comparison clearly shows that obtained over 18 inches in a 19-inch element is negligible.
there is a profound langth effect. It is due to plastic instability
in the presence of material asymmetries around defects andInteM teCroeciqipupamtrsreadml

to vaialye stfneaogtheaial ileh Such. Anonffeardficl selected from a known distribution and a test is simulated.
tneialz athatyicallyon in cloed form. Aec onlinher, h This is repeated many times until enough output strength

numricl aalsisis on inthenet sctinwhee te r values have been generated to give an idea of the output
variation along the length of the members in group five is

* used as an input to a non-standard finite element simulation ditbuon
of the group five specimens. In this case the input was of two kinds: (I) the distribution of

* element properties and (2) a quality description of the long
Monte Carlo Simulation of Length Effect member to be simulated. Input (1) consisted of a five-variate

normal distribution in the variable El, ln(M ), ln(y U), Iln(n),
Group ive specimens were simulated with the special finite adE*Tiwsspcfebyaiv-ctroI means and
element analysis given in the appendix. In that analysis th-- a five by five symmetric covariance matrix, that is, by 20

* nonlinear Ramberg-Osgood function given in equation (7) is independent statistics. See equations (9) and (10). With the
used to represent the relationship between moment and curva- exception of Er and its variance, each of these statistics is a
ture. This equation is exactly solved by iteration for each function of the eccentricity of the element as can be seen by
given set of four Ramberg-Osgood properties: El, xup yu, and examining table 3 and figure 8. Hence each was specified by
n. These properties are assumed to be piecewise constant the three coefficients of a parabola
functions of x with five "pieces" or "finite elements" cover- a() +b4+c,()
ing the range of x. Deflections and slopes are matched at the C eC
nodes between elements. This is far more exact than a stan- Here a;, b, and ci are the fitted coefficients, Si is a statistic
dard finite element approach which would approximate fitted by least squares to the data in table 3, and e is the ec-
deflection shapes over each element and would account for centricity. These coefficients are shown in table 4. The other
geometric nonlinearity in an approximate manner via the so- input (2) consisted of the Er values of the five elements of the
called stability matrix. Since the number of elements could long member to be simulated. These had been obtained
not be made arge here, it was decided to use a more exact nondestructively for the specimens in groupf ive before testing
non-standr d finite element method. Five 19-inch elements them in eccentric axial compression.

6
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b d ,Selection of Elements
The Monte Carlo technique proceeded as follows: El 1

* For each element with a given measured value of Er, ln(Mu)I
zeromea anduni varanc: [E J Normal with mean ;A and covariance Y-

1. Generate four independent random normal variates with In(n)

[zu, where
Z= Z2(12)

S3 (13)

This vector will be used in step 4. It identifies the randomly- S
*chosen element. S

2. Using the current eccentricity e of the element, calculate

ditiuio tti eccentricity:

Table 3.-Sumixnmey of oesty statitcs

StaddkGroup

1 2 3 4

MEANS (see eq. (9))

*S, - aea(E1) 0.444761+09 0.400731+08 0.391585+08 0.448324+08

*S. - menm(In ME) .104730+ 02 .10580+02 .107590+02 .106890+ 02

S, - men"(l Y) -.687770+01 -.672110+01 -.688740 +01 -.787720+01

S. mnwau(ImaW .205100+01 .219090+01 .209390+01 .16565+01

So =mas(Ed. .104183+07 .104673+07 .102889+07 .104045+07

COVARIANCES (see eq. (10))

*So - var(EI) .133746+15 .106474+15 .938794+14 .107557+15

S, - cov(E1, IN ME) .133715+07 .153167+07 .227157+07 .326864+07

So .=COV(IE ,,1 Y) -.40008 + 07 -.1790665+07 -.176640+07 .373817+06

S. - eO,(EI, IN..) .115347+07 .217906+07 .25602+07 .191373+07

S* -1 -cov(EI,Er) .106694+13 .126632+13 .153258+13 .141881 +13

S., =VWgIl ME) 0.632384-01 0.57320 -01 0.116250+-00 0.192B32+ 00

S., =COV(1m M, In YE) .473633 -01 .309349-02 .291294-01 .772557 -01

S., =COV~n Mo, In 0) .243918-01 .456674-01 .116520+00 .385921 -01

S,. = COV(l Mo, Er) .25490+05 .274662+05 .470426 +05 .444307 +05

S,, = var(Ilmy.) .635311+00 .451765 +00 .106489+01 "995R3+00

5,, =COW(IN y., In m) .420844-01 -.145156-01 .153632 +00 .703405-01

5,, = COV(tY 0, Ed) -.296865+ 0 -.225922+05 -.351960+05 .915227+04

5,8, .var(Im m) .217163+00 .323039+00 .547928+00 33626 + 00

.0 -cOV(Ima.Ed) .9576486+04 .174911+05 .55"619 + 0 .337252 +05

S.-"a).382101+11 J314306+11t .469594+11 .26M39+11

7



and Table 4.--Caeffimis of fitted permbdlu (one eq. (11))
rS6 ST S8 S91 S1 .
IS7  S11 S12 SIS S.IG

1-M SIP S12 SI, Sig S17 (14) 8 1  b1  c
Is, S,, SIG5 SI SI

LSIG S14 S17 SIG S.] 0.233530+06 -.232M506 0.445M+608
2 -.354431+U0 .135828+00 .107071+02

where SJ~i 1,20 are given by equation (11) as functions of e.
(Note that S, and S,, are independent of e. so the given Eri 3 -.274006+01 .36566+01 -.782813+01
always constant.)

3. With this y* and I and the given Er, calculate a condi-4 -. 30+1.77001 161+1
tional four-variate property distribution: 5 0.0 6.0 .103719+07

[l 16 .9=21 + 14 -.646011+14 .106760+15
I n(yu)I Normal with mean sand covariance 7 ZU2M4+07 -.40U23+07 .326550+07

I n(n) a -.131435+06 -.374509+07 .70772 +05

where 9 -.33692+ 07 .29M317+07 .194974+07

10 -.66601+ 12 .266089+12 .144551+13

A ISI Er-Ss 1S1. 11 M8913+609 -.338=2+00 .193529+00
S2 [5: 7 (15 n=.222+Oo -.25576+06 .79n267 -01

* ad13 -.gum56- 01 .177533-01 .975369 -01

SS s ' SI '*' 'O"SIS114 -.66531+04 -.1780+5 .467426+65
A~~~ ~ 1 sS,., S,.S 1 IS4S'4 S,,I ,S1 W +9

Is , ,,5, 'SSI ~ 4  sss 4s 5 .521+0 -.994989+00 .10656+01t

L~ .~ ,.s.J LSSI ss, s.s, s~ j16 -.26166-01 -.5%W61 -01 .996603-1
17 Mull61+605 -.114556+06 .37W61+04

4. Calculate the four element properties 1s -J.39s+u _15335+00 .417622+60

FEI 1 9 -.61=34+05 .271180+05 .3934U4+05

ln(Mu) 1  .i2 20 0.0 6.0 .30421+ 11
[Inn)

From these four values the property curve, equation (8), of
the element can be determined.

As load increases the eccentricity of any given element in-A#IER ailfe
creases in response to the increasing deflections of the MrE
member. And since it was found that characteristic element
behavior is different at different eccentricities it was decided
to let the characteristic property distribution of the element
evolve as a function of -,where e is the current eccentricity moLwms r ~ErCUV
of that element. Thus, elemn properties are not constant Of EACM ELEfWT AS MT ECC(A'TRICITY AV SA8

and cannot be said to identify the element. However, the z #M$ IEO-

vector can be used to identify the element, since it specifies
the number of standard deviations away from the mean that Nr

the element lies within its distribution. If this is held constant,
the element keeps its rank order relative to other elements in
the distribution. This is like assuming that the rank order of UP 3 IA-CREM YAWL AT FA I I
the short specimens in any group would have been the same if LEAS~T ONE ELEMATm REACHES FAIWUM

they had been tested at any other eccentricity. (This assump--__
tion hs a useful expedient, but it may not be strictly te, since

M 1496anthe relative severity of defects may be influenced to. X
tent by the eccentricity of the load.) Flgure 10 -Bock diagram of comutig method



Computi Method 20-

Figure 10 shows a block diagram of the computing method.
The inner loop is necessitated by the nonlinearity of the '4-
moment-curvature relationships of the elements. The moment-
curvature relationship, or "property curve," is represented '0 [
here as a Ramberg-Osgood function as discussed under Data
Processing. As the deflections increase, the property curves 16
must shift in response to the increasing eccentricities of the
elements. This necessitates a middle loop of iterations until "2
the deflections of the nonlinear finite element solution are
congruent with the eccentricities used to derive the properties a
of each element. Finally, there is an outer loop in which the
load is gradually incremented until at least one element 4

reaches failure. If these increments are not too large, conver-
" gence of the inner loops will be very rapid. A complete flow o I I 2 Z W 5 40

diagram of the subprogram SIMTST used to simulate an ec- 0 4 9 2 6 fo 24 ?D 3 36 40

centrically loaded member is shown in figure 11. Computing
time to simulate one destructive load test of a five-element 1,lra

member was about 4 seconds on a Univac I 110 computer. Figure 12.-Simulated failure load of 8-foot-long mem-
bers versus experimental failure loads of

Results of Monte Carlo Simulations groupfive.

Verlifcation of the Model
Figure 12 shows a comparison of model and experimental roughly verify the computer finite element model. Each test
results. Group five consisted of a small sample of just 29 member had been E-rated at five locations within the gage
members of 8-foot gage length under I-inch eccentric axial length, and the computer used these ratings as input specifica-
load. This group was included in the study in order to tions for a five-element simulation. Each member was

simulated 30 times with element properties chosen randomly
from conditional distributions, given the input E-ratings. The

/ LOPML/ZE ' WA. EECroNS, simulations are shown in figure 12 as vertical lines represent-
ing the mean plus or minus one standard deviation. The 45 0
lines show where the data should fall for perfect verification.

I It is seen that the mean of group five is accurately reproduced
W Sr/FF ED TONS but that the variance is underestimated. That is, the trend of

the data is not a 45 0 line as it should be. This suggests that
there may be a better index of quality than the edgewisel ,c~v~ ~ s  E-rating. Perhaps flatwise E would prove to be more sen-

sitive. The correlation coefficient between Er and In Mu was
NO only ro.5i1 I

IFROM DEFLEt/ONS ANO t ON, S correlation coefficient = .64 for group (18)0 .643

eLMEN YES our in this study, which is not very great. The correlation between
the Er of the center element and the ultimate load for group
five was also small, namely 0.68. But the fact remains that the

N MONI AND MPE~ CURS correlation between strcngth and nondestructive quality in-
IsEr sEcANr sT/Ffsses dices is never very great. This is the essential problem of

lumber grading translated here into element grading. Never-
theless it may be possible to force the computer model to do
better in the aggregate even though it remains a somewhat

[ iT Nw FWCfYn7 FOM Dfrosl poor predictor for individual members. This is worthy of fur-
ther study.

DE'TER/ORA-/OMP The Effect of Length

ESr NY The effect of length has been discussed briefly above in the
S NEW PROPE rt ELEMENT our comparison of experimental results for groups one and five.

A more thorough investigation of the effect of length can be
NO made with the use of the computer model. Figure 13 shows

'' I'°how the 29 specimens in group five would have behaved if
Figur 11.-Row diaram for program SIMTST, the M 4 s72 they had been tested at other eccentricities or in pure bending.

finite dement simulation of a long member Each specimen is represented by the average of 30 simulations
test. and mean and standard deviation of the sample of 29 is

9
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, Figure 13. -Computer simulations of 8-foot-long mem- Figure 14. -Comparisons of Er distributions of group

bers under eccentric axial load five and groups one to four.

plotted in the figure. Deflections due to loaa are ignored in buckling, size effect, and the interaction of bending and com-
plotting moment versus axial load, that is: pression failure.

"''M = Pe (19)

is used rather than Summary
M =Pd (20)

The interaction of bending and compression strengths of
even though the deflection d might be quite large. This was western hemlock 2 by 6 lumber was investigated. Over 400
done for the sake of facilitating application to design. The short specimens (with gage length = 18 in.) were tested in four
design engineer kPows the eccentricity e but cannot accurately groups with different ratios of moment and compression.
estimate the late.al deflection 6 especially when plastic Some interaction was found that decreases with increasing

- buckling is a possibility, length, as shown by the results of a finite element.simulation
Ialso reported here. This finite element model was able to
It is seen in figure 13 that the mean moment capacity does reproduce mean results of a small sample of 8-foot-long
not improve with the addition of a small amount of axial specimens but did not show as large a variation as the experi-
compressive force as was found for groups one to four. mental data. The model could be greatly improved if a better
However, the low tail of the distribution does still exhibit this nondestructive index of quality could be found which cor-
effect, though it is far less pronounced than it was for the related better with strength than the edgewise bending stiff-
short specimens (compare fig. 9). Before this effect can be ness used here. Perhaps a combination of two indices should
cunted upon in design, other loadings and different species be used.

,s should be investigated. Also, the behavior of the

computer model in the low tail may not be reliable since the Data should be obtained for other sizes and species. The
model is known to underestimate variability. Of course, for results could be used by researchers studying the reliability of
very long members, failure by buckling will appear at low wood walls and roof-truss systems. The data presented here
coprssv loads. Even at 8 feet the influence of some in-compressive lare sufficient to show that a simple linear interaction failure
elastic buckling is already evident, as can be seen by compar- criterion is conservative-the degree of conservatism being

"* ing figures 9 and 13. In this comparison it is important that greater for shorter members.
the grade of the small population in group five should resem-

ble the grade of the populations in groups one to four. Figure
14 shows a comparison of the Er distribution of group five to Literature Cited
the common Er distribution of groups one to four. It is seen-- 1. Bohannan, B.
that the resemblance is quite close although no special attempt 1974. Time-dependent characteristics of pre-stressed
was made to select group five members for this match. Also, beams. USDA For. Serv. Res. Pap. FPL 226, For. Prod.
the comparison of figures 9 and 13 is a comparison of Lab., Madison, Wis.

simulated members with real test specimens, so modeling error
is present. The model underestimates variability. Thus the 2. Hildebrand, F. B.

. . comparison should be restricted to the means. Nevertheless, 1952. Difference equations. Methods of Applied
the comparison strongly indicates that the effect of length is a Mathematics. Prentice-Hall, Inc., Englewood Cliffs,
profound one. Three things contribute to this: inelastic N. J.
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• .Appendix: Finite Element Analysis

.. Combined Bending and Compression
SConsider a member of length L under eccentric axial load and divide the member into m equal
, elements of length h as shown in figure Al.

L = mh (Al)

Isolate the nth element. From elementary beam theory the moment-curvature relationship is

(El) A = - Pyn (A2)

where Yn= lateral deflection in the range (n-I) h 4 x 4 nh measured from the line of action of P

and primes denote differentiation with respect to x. Let the nodal displaceme!nts be q.:

y = qn, at x = nh, n = O,m (A3)

The solution of differential equation (A2) which satisfies boundary conditions (eq. (A3)) is

S[ qnCos(n - l)A h - qn- lcos(n~nh) ] sinAnx
L sinknh

+ -qnsin(n - I)nh + qn si X (A4)

L ~i~ sinknhI
where

A1 _

Match slopes at nth node:

Yn = Yn +l oat x = nh (A6)

Substituting equation (A4) into (A6) and using some trigonometric identities this becomes

sinh qn- + AncOs'nh + n+ico5n+ih q. + - sifn- + ih + =

Equation (A7) yields a banded matrix of rn-I equatiolis for m + I unknown qo to qm. But, of
course, two of the nodal displacements are given:

(10 = qm = E (A8)

where i is the given eccentricity. Thus all nodal displacements can be obtained by solving an
(m-I)th order linear system if the An are given. For small loads, the (EI)n are constants indepen-
dent of P. For larger P one must obtain (EI)n from the secant to the point on the property curve
corresponding to the load. To find this point requires some iteration, since the deflections de-

pend on the (EI)n . the (E), depend on the moments, and the moments depend on the deflec-
tions. A few iterations around this loop will quickly converge, however, especially if one starts

1
MA -Py , NrRO/DAL ,x/s

-I o 3,, ... / '

M 1406m
Pburr Al -Fret-bod dkram of member under worn-

trk ida load. Centroidl deflection y is
meoni from lin of ti of load P.

ii1"
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Figure A2.-Iteration loop uWed in fuite element simula-
tion program.

with a good initial guess. Hence for large loads one must begin with a load small enough to en-
sure linear behavior and increase by small increments, iterating to convergence after each incre-
ment, and using the solution from the last load as the initial guess for the (EI)n after each incre-
ment. This procedure continues until one of the elements reaches its failing load. Figure A2
shows the iteration loop.

This method is capable of accurately modeling the phenomenon of plastic buckling when all
elements are sufficiently ductile. In that case the deflections grow rapidly just before failure.

Pure Beading
In the case of pure bending the finite element analysis is greatly simplified by the absence of any
buckling phenomenon. Consider a member of length L under pure bending as shown in figure
A3. Again cut the member into m elements of length h so that

. L - mh (A9

Isolate the nth element. The moment-curvature relationship is

* (El)nY = M (AIO)

where Yn = lateral deflection in the range (n - l)h 4 x 4 nh. Let nodal displacements be qn:

y =qn at x - nh, n = O,m (All)

The solution of equation (A 10) satisfying conditions (Al l) is
I ~ Yn " Pnq ', - pnh(n-i)x + pn(t)n(n-1)

+ n(x) - (r.-i)qn - qn-1) + nq- 1  (A12)

where
M

(El)n (AI3)

Match slopes at nth node:

Yn y + 1  0, x , nh (A14)

% 12 2.0-.13-10/82



Substituting (A12) into (A14) and simplifying yields

qn 2qn + Qn+l I "(un +n+l1) (AIS)

This is a finite difference equation whose solution can be obtained in closed form. The homoge-Ineous solution is
qn = a + Pn (A16)

where a and A are arbitrary constants. Now let a and P be functions of n:

qn = an + jnn  (AP7)

and use the method of variation of parameters (2) to find

n-I
an = -0 (i+l) -%( +#L+r) + A (AIS)

0

n-I
fin Z ( i + + n + B (A19)

2

where A and B are constants analogous to integration constants. They are determined by the
conditions

n = 0 (A20)
and

qm -- 0 (A21)

from which

A =0 (A22)

and

L2m i(m-i, +i+ I) A3

Tus after simplification, we rind

qn -" En2 (m-n) 1 (2i-l)pi + n I (7n- 2i + I) i  (A24)

I n+l

From the nodal displacements, the deflection at the center of the nth element is calculated to be

n qn-I +qn + ')n(A25)

The computer algorithm proceeds as follows:

I. The strength of the member is the strength of the weakest element.

2. At failing load, the center deflection of the member is computed from (A25), using (A24) and
(A13).

13



U.S. Forest Products Laboratory

.- Strength of Lumber Under Combined Bending
and Compression, by John J. Zahn, Res. Pap. FPL
391, FPL, For. Serv., USDA. 13 p. Madison, Wis.

Extensive tests of western 2 by 6's under
eccentric axial load support the conjecture that

*- adding a small compressive force increases bending
strength. Length effect was tested on short test
members by simulating long members with a finite
element computer program. A small sample of
long members was tested for verification of the
model which accurately reproduces the mean but

* underestimates the variance. Further work on the
model will be applicable to column and wood truss
design.
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